Soal Tentukan negasi atau ingkaran dari pernyataan-pernyataan di bawah ini: a) Bogor hujan lebat dan Jakarta tidak banjir. b) Hari ini tidak mendung dan Budi membawa payung Pembahasan: Seperti pada soal-soal sebelumnya, maka negasi dari konjungsi adalah sebagai berikut.

Aturan KonjungsiAturan DisjungsiContoh Soal DisjungsiAturan ImplikasiContoh Soal ImplikasiAturan BiimplikasiContoh Soal BiimplikasiShare thisRelated posts Dalam logika matematika kita mengenal Pernyataan Majemuk. Pernyataan Majemuk adalah dua pernyataan atau lebih yang digabungkan menjadi satu, dengan aturan tertentu. Aturan itu dalam logika matematika bisa dibagi menjadi Empat Macam, yakni Aturan Konjungsi Aturan Disjungsi Aturan Implikasi Aturan Biimplikasi Untuk penjelasan lengkapnya silakan simak pembahasan dibawah ini dengan seksama. Aturan Konjungsi Konjungsi adalah kalimat majemuk yang dihubungkan dengan kata hubung “dan”. Sehingga jika p dan q adalah suatu pernyataan maka konjungsi dari p dan q dilambangkan dengan “p ∧ q”. Dibawah ini adalah tabel kebenaran konjungsi yaitu Dari tabel itu bisa disimpulkan bahwa konjungsi dari p dan q hanya bernilai benar jika pernyataan p dan q keduanya bernilai benar. Selain itu konjungsi ini bernilai salah. Aturan Disjungsi Disjungsi adalah kalimat majemuk yang dihubungkan dengan kata hubung “atau”. Sehingga jika p dan q adalah suatu pernyataan maka disjungsi dari p atau q dilambangkan dengan “ p ∨ q ’’ Tabel kebenaran untuk disjungsi Dari tabel itu bisa diambil kesimpulan bahwa disjungsi dari p atau q hanya bernilai salah jika pernyataan p serta q keduanya bernilai salah. Selain itu konjungsi ini bernilai benar. Contoh Soal Disjungsi 1. Tentukanlah nilai kebenaran dari setiap pernyataan majemuk berikut ini a 9 dan 14 adalah bilangan yang habis dibagi 3 b Bandung atau Palembang adalah kota yang terletak di pulai Jawa c 20 habis dibagi 6 dan jumlah sudut-sudut dalam segitiga adalah 360º d Surabaya ibu kota provinsi Jawa Timur atau ayah pergi ke kebun bersama kakak Jawab a 9 dan 14 adalah bilangan yang habis dibagi 3. Tinjau 9 adalah bilangan yang habis dibagi 3 Benar 14 adalah bilangan yang habis dibagi 3 Benar Maka B ∧ S ≡ S Jadi pernyataan majemuk di atas bernilai Salah b Bandung atau Palembang adalah kota yang terletak di pulau Jawa. Tinjau Bandung adalah kota yang terletak di pulau Jawa Benar Palembang adalah kota yang terletak di pulau Jawa Salah Maka B ∨ S ≡ B Jadi pernyataan majemuk di atas bernilai Benar c 20 habis dibagi 6 dan jumlah sudut-sudut dalam segitiga adalah 360º Tinjau 20 habis dibagi 6 salah Jumlah sudut-sudut dalam segi tiga adalah 360º salah Maka S ∧ S ≡ S Jadi pernyataan majemuk di atas berniali Salah d Surabaya ibu kota provinsi Jawa TImur atau ayah pergi ke kebun bersama kakak. Tinjau Surabaya ibu kota provinsi Jawa Timur Benar Ayah pergi ke kebun bersama kakak faktual Maka B ∨ Faktual ≡ B Jadi pernyataan majemuk di atas bernilai Benar. Aturan Implikasi Implikasi adalah kalimat majemuk yang disusun dari dua pernyataan p dan q dalam bentuk “jika p maka q” ditulis “p → q. Dalam bahasa lain ditulis ” q jika p” , “p syarat cukup untuk q”, “q syarat perlu agar p” Dimana p dinamakan sebab kejadian anteseden dan q dinamakan akibat kejadian konsekwen. Untuk tabel kebenaran implikasi bisa dilihat pada gambar dibawah ini. Dari tabel diatas bisa disimpulkan bahwa implikasi dari jika p maka q akan bernilai salah jika p benar dan q salah. Selain itu implikasi akan bernilai benar. Baca Juga Contoh Soal Logika Matematika Kalimat Terbuka Contoh Soal Implikasi Tentukan nilai kebenaran dari setiap implikasi berikut ini a Jika kambing berkaki dua maka kerbau berkaki empat b Jika 3 faktor dari 12 maka 12 habis dibagi 5 c Jika x habis dibagi 3 maka x habis pula dibagi 6 d Jika x bilangan ganjil maka x tidak habis dibagi 4 e Jika a bilangan ganjil dan b bilangan genap maka a + b bilangan ganjil. Jawab a Jika kambing berkaki dua maka kerbau berkaki empat Misalkan p “Kambing berkaki dua” Salah q “Kerbau berkaki empat” Benar Maka p → q ≡ S → B ≡ B Jadi pernyataan majemuk di atas bernilai Benar b Jika 3 faktor dari 12 maka 12 habis dibagi 5 Misalkan p “3 faktor dari 12” Benar q “12 habis dibagi 5” Salah Maka p → q ≡ B → S ≡ S Jadi pernyataan majemuk diatas bernilai Salah c Jika x habis dibagi 3 maka x habis pula dibagi 6 Ambil x = 9 sehingga pernyataan diatas berbunyi “Jika 9 habis dibagi 3 maka 9 habis pula dibagi 6” Sehingga B → S ≡ S Jadi pernyataan majemuk diatas bernilai Salah d Jika x bilangan ganjil maka x tidak habis dibagi 4. Karena semua bilangan ganjil tidak habis dibagi 4 maka pernyataan tersebut bernilai benar e Jika a bilangan ganjil dan b bilangan genap maka a + b bilangan ganjil Karena jumlah bilangan ganjil dan genap selalu menghasilkan bilangan ganjil, maka pernyataan di atas benilai benar Aturan Biimplikasi Biimplikasi adalah kalimat majemuk yang disusun dari dua pernyataan p dan q dalam bentuk “p jika dan hanya jika q” ditulis “p ↔ q”. Dalam hal ini p dan q keduanya dapat dianggap anteseden dan dapat dianggap konsekwen. Tabel kebenaran untuk Biimplikasi dapat dilihat pada gambar dibawah ini. Dari tabel diatas dapat disimpulkan bahwa biimplikasi dari p jika dan hanya jika q akan bernilai benar jika p dan q keduanya bernilai sama. Selain itu implikasi akan bernilai salah. Contoh Soal Biimplikasi 1. Tentukanlah nilai kebenaran dari setiap biimplikasi berikut ini a Soeharto adalah presiden RI pertama jika dan hanya jika danau Toba terletak di provinsi Sumatera Barat. b 15 adalah bilangan genap jika dan hanya jika 15 tidak habis dibagi 2. c x adalah bilangan prima jika dan hanya jika x tidak habis dibagi 6 d ABC adalah segitiga sama sisi jika dan hanya jika ketiga sisinya sama panjang. Jawab a Soeharto adalah presiden RI pertama jika dan hanya jika danau Toba terletak di provinsi Sumatera Barat. Misalkan p “Soeharto adalah presiden RI pertama” salah q “danau Toba terletak di provinsi Sumatera Barat” salah Maka p ↔ q ≡ S ↔ S ≡ B Jadi pernyataan majemuk diatas bernilai Benar b 15 adalah bilangan genap jika dan hanya jika 15 tidak habis dibagi 2. Misalkan p “15 adalah bilangan genap” salah q “15 tidak habis dibagi 2” Benar Maka p ↔ q ≡ S ↔ B ≡ S Jadi pernyataan majemuk di atas bernilai Salah c x adalah bilangan prima jika dan hanya jika x tidak habis dibagi 6 Tinjau implikasi arah ke kanan dan ke kiri, diperoleh Jika x adalah bilangan prima maka x tidak habis dibagi 6 Benar Jika x tidak habis dibagi 6 maka x adalah bilangan prima Salah Karena biimplikasi harus benar pada kedua arah kiri dan kanan, maka biimplikasi tersebut bernilai salah d x lebih dari 6 jika dan hanya x lebih dari 3. Tinjau implikasi arah ke kanan dan kekiri, diperoleh Jika x lebih dari 6 maka e lebih dari 3 Benar Jika x lebih dari 3 maka x lebih dari 6 salah Karena biimplikasi harus benar pada kedua arah kiri dan kanan, maka biimplikasi tersebut bernilai Salah. e ABC adalah segitiga sama sisi jika dan hanya jika ketiga sisinya sama panjang. Tinjau implikasi arah ke kanan dan ke kiri, diperoleh Jika ABC adalah segitiga sama sisi maka ketiga sisinya sama panjang Benar Jika ketiga sisinya sama panjang maka ABC adalah segitia sama sisi Benar Karena benar pada kedua arah kiri dan kanan, maka biimplikasi tersebut bernilai Benar. Itulah penjelasan Logika matematika Pernyataan Majemuk. Semoga bisa bermanfaat dan dapat menjadi referensi kalian. Terimakasih sudah berkunjung dan jangan lupa untuk membaga artikel lainnya Berikutadalah jenis-jenis Negasi pertanyaan majemuk dalam matematika yang perlu diketahui. 1. Negasi Konjungsi. Dikutip dari Buku Penunjang Bahan Ajar Matematika SMK Kelas XI oleh Yuliansyah (2019), negasi konjungsi merupakan pernyataan majemuk yang ditandai dengan kata penghubung: dan, seandainya, tetapi, seperti, walaupun, bahwa, supaya.
Sobat Zenius tahu gak sih kalau dalam pelajaran Matematika, elo bukan hanya mempelajari angka dan perhitungan saja. Namun, terdapat materi yang dipelajari selain hitung-menghitung, yaitu materi logika matematika. Apa itu logika matematika? Pasti itu merupakan salah satu pertanyaan saat elo pertama kali mengetahui kalau ternyata Matematika juga memiliki materi selain hitung-hitungan. Nah, untuk menjawab pertanyaan tersebut, di artikel kali ini, gue bakalan menjelaskan mengenai definisi dan topik materi tentang logika matematika dengan lebih detail. Yuk, simak ulasannya di bawah ini. Illustrasi berpikir menggunakan logika Dok. Zenius Pengertian Logika MatematikaPernyataan Ingkaran/Negasi ~Pernyataan Majemuk Pengertian Logika Matematika Sebelum membahas lebih lanjut mengenai topik dalam materi ini, ada baiknya elo tahu pengertian logika matematika terlebih dahulu. Logika matematika adalah cara berpikir atau bisa dikatakan sebagai landasan tentang bagaimana cara kita mengambil kesimpulan dari suatu keadaan atau kondisi tertentu. Jadi, dengan mempelajari materi ini, elo bakal bisa berpikir dengan lebih kritis dan rasional sehingga nantinya keputusan yang diambil lebih objektif dan tidak bias. Nah, karena elo sudah tahu apa itu logika matematika, selanjutnya, gue bakal bahas lebih detail mengenai topik-topik dalam materi ini yang mencakup pernyataan, ingkaran, konjungsi, disjungsi, implikasi, dan biimplikasi lengkap dengan tabel kebenaran, simbol, dan contoh logika matematika dari setiap topik tersebut. Check it out! Pernyataan Pada dasarnya, pernyataan logika matematika merupakan suatu kalimat yang bernilai benar ataupun salah, namun tidak keduanya. Sedangkan, suatu kalimat dikatakan bukan pernyataan jika kita tidak dapat menentukan apakah kalimat tersebut benar atau salah atau mengandung pengertian relatif. Terdapat dua jenis pernyataan, yaitu pernyataan tertutup dan pernyataan terbuka. Pernyataan tertutup merupakan pernyataan yang sudah bisa dipastikan nilai kebenarannya, sedangkan pernyataan terbuka yaitu pernyataan yang belum bisa dipastikan nilai kebenarannya. Contoh 8 + 2 = 10 pernyataan tertutup yang bernilai benar4 × 6 = 20 pernyataan tertutup yang bernilai salah5a + 10 = 40 pernyataan terbuka, karena harus dibuktikan kebenarannyaJarak Jakarta-Bogor adalah dekat bukan pernyataan, karena dekat itu relatif Ingkaran/Negasi ~ Ingkaran didefinisikan sebagai sebuah pernyataan yang memiliki nilai kebenaran yang berlawanan dengan pernyataan semula. Berikut adalah simbol dan tabel kebenaran ingkaran/negasi. p~pBSSB Artinya, jika suatu pertanyaan p bernilai benar B, maka ingkaran q akan bernilai salah S. Begitu pula sebaliknya. Contoh p Semua murid lulus ujian ~p Ada murid yang tidak lulus ujian Pernyataan Majemuk Pernyataan majemuk merupakan pernyataan gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung. Pernyataan majemuk di dalam logika matematika terdiri dari disjungsi, konjungsi, implikasi, dan biimplikasi. Konjungsi ∧ Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung dan’ sehingga membentuk pernyataan majemuk p dan q’ yang disebut konjungsi yang dilambangkan dengan “p∧q”. Berikut adalah simbol dan tabel kebenaran konjungsi. pqp∧qBBBBSSSBSSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep konjungsi akan bernilai benar jika dan hanya jika kedua pernyataan p dan q benar. Contoh Budi sudah makan belajar dan makan. Misalkan, untuk dapat diizinkan bermain oleh Ibu, Budi harus memenuhi kondisi di atas. Jika satu saja atau bahkan kedua pernyataan tersebut dilanggar, maka Budi tidak diizinkan untuk bermain. Disjungsi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung atau’ sehingga membentuk pernyataan majemuk p atau q’ yang disebut disjungsi yang dilambangkan dengan “p ∨ q”. Berikut adalah simbol dan tabel kebenaran disjungsi. pqp∨qBBBBSBSBBSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep disjungsi hanya akan bernilai salah jika kedua pernyataan p dan q salah. Contoh Bandung atau Palembang adalah kota yang terletak di Pulau Jawa. Pernyataan Bandung adalah kota yang terletak di Pulau Jawa adalah benar. Pernyataan Palembang adalah kota yang terletak di Pulau Jawa adalah salah. Sehingga pernyataan Bandung atau Palembang adalah kota yang terletak di Pulau Jawa bernilai benar. Implikasi ⟹ Implikasi bisa dipandang sebagai hubungan antara dua pernyataan di mana pernyataan kedua merupakan konsekuensi logis dari pernyataan pertama. Implikasi ditandai dengan notasi ⟹’. Misalkan p, q adalah pernyataan, implikasi berikut p ⟹ q dibaca jika p maka q’. Berikut adalah simbol dan tabel kebenaran disjungsi. pqp⇒qBBBBSSSBBSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep implikasi akan bernilai salah jika dan hanya jika sebab bernilai benar namun akibat bernilai salah. Selain itu implikasi bernilai benar. Contoh Jika Budi sembuh maka Budi akan sekolah Jika betul Budi sembuh lalu Budi masuk sekolah, Budi telah melakukan hal yang benar. Namun jika Budi sembuh namun dia tidak masuk sekolah, Budi telah berbuat salah karena mengingkari janjinya. Lalu, bagaimana jika Budi belum sembuh? Perhatikan bahwa Budi hanya berjanji masuk sekolah jika dia sembuh. Akibatnya jika dia masih belum sembuh, tidak masalah bagi Budi untuk masuk sekolah ataupun tidak karena dia tidak melanggar janjinya. Biimplikasi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung jika dan hanya jika’ sehingga membentuk pernyataan majemuk p jika dan hanya jika q’ yang disebut biimplikasi yang dilambangkan dengan “p ⇔ q”. Berikut adalah simbol dan tabel kebenaran biimplikasi pqp⇔qBBBBSSSBSSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep biimplikasi akan bernilai benar jika sebab dan akibatnya pernyataan p dan q bernilai sama. Baik itu sama-sama benar, atau sama-sama salah. Contoh Ayah mendapatkan gaji jika dan hanya jika ayah bekerja. Jika ayah mendapatkan gaji maka ayah bekerja dan jika ayah telah bekerja maka ayah akan mendapat gaji. Sebaliknya, jika ayah tidak mendapatkan gaji maka ayah sedang tidak bekerja dan jika ayah tidak bekerja maka ayah tidak akan mendapat gaji. Nah, Sobat Zenius apa sudah dapat memahami materi tentang logika matematika dengan baik? Selanjutnya, gue bakal kasih link buat elo mengasah pemahaman melalui latihan soal di sini. Sekian artikel tentang rangkuman materi logika matematika. Semoga artikel ini bermanfaat dan menambah wawasan elo. Jangan lupa buat mengerjakan latihan soalnya, ya! Berani ngetes skill matematika? Nih, cobain Zencore! Dengan fitur adaptive learning, elo bisa tau seberapa jago kemampuan fundamental lewat kuis CorePractice, sekaligus upgrade otak biar makin cerdas! Ketuk banner di bawah buat cobain! Nggak cuma kuis, kalau elo berlangganan paket belajar Zenius elo bakal dapat akses ke ribuan live class asik bersama para tutor berpengalaman. Klik di bawah ini ya untuk pengalaman belajar yang lebih seru! Tonton Video Pembahasan Tentang Logika Matematika dari Zenius Materi Matematika Kalimat-kalimat Logika Materi Matematika Hubungan Antar Kalimat Materi Matematika Pengambilan Kesimpulan Originally published October 26, 2019Updated by Ni Kadek Namiani Tiara Putri – SEO Writer Intern Zenius
LatihanLogika Matematika 1. Tentukan negasi dari pernyataan-pernyataan berikut: a) Hari ini Jakarta banjir. b) Kambing bisa terbang. c) Didi anak bodoh. d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu. Pembahasan. a) Tidak benar bahwa hari ini Jakarta banjir. b) Tidak benar bahwa kambing bisa terbang.
Suatu pernyataan majemuk dalam bahasan logika matematika memiliki bentuk ekuivalen pernyataan majemuk. Bentuk ekuivalen pernyataan majemuk dapat ditunjukkan melalui hasil nilai-nilai kebenaran yang sama. Contoh sederhana bentuk ekuivalen pernuataan majemuk terdapat pada Saya mampu mengerjakan soal matematika dan Saya bukan tidak mampu mengerjakan soal matematika. Kedua pernyataan tersebut terlihat berbeda. Namun, kedua pernyataan tersebut sebenarnya memiliki makna yang sama karena ada dua kali bentuk ingkaran atau negasi. Contoh lain bentuk ekuivalen pernyataan majemuk Jika saya pergi ke sekolah naik bus maka saya sampai sekolah tepat waktu dan Jika saya tidak sampai sekolah tepat waktu maka saya pergi ke sekolah tidak naik bus atau. Dua pernyataan tersebut merupakan pernyataan majemuk yang ekuivalen. Di mana prenyataan pertama merupakan implikasi dan pernyataan kedua merupakan bentuk kontraposisinya. Ekuivalen secara umum dinyatakan dalam arti mempunyai nilai/ ukuran/ makna yang sama atau seharga. Kondisi ini bukan berarti bahwa ekuivalen dan sama dengan adalah hal yang sama. Pengertian sama dengan mengarah pada kondisi yang menunjukkan sama dan setara. Sedangkan ekuivalen memiliki cakupan kondisi yang lebih luas dari pengertian sama dengan. Bagaimana cara mengetahui dua pernyataan majemuk yang saling ekuivalen? Bagaimana cara menentukan bentuk ekuivalen pernyataan majemuk? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Pernyataan Majemuk yang Ekuivalen Cara Membuktikan Bentuk Ekuivalen Pernyataan Majemuk Contoh Soal dan Pembahasan Contoh 1 Menentukan Bentuk Ekuivalen Pernyataan Majemuk Contoh 2 Menentukan Pernyataan Majemuk yang Ekuivalen Contoh 3 Menentukan Pernyataan Majemuk yang Ekuivalen Baca Juga Konvers, Invers, dan Kontraposisi dari Suatu Implikasi Sebuah pernyataan majemuk bisa jadi memiliki lebih dari satu bentuk ekuivalen pernyataan majemuk. Perhatikan kembali contoh pernyataan majemuk Jika saya pergi ke sekolah naik bus maka saya sampai sekolah tepat waktu. Salah satu bentuk ekuivalen pernyataan majemuk tersebut adalah Jika saya tidak sampai sekolah tepat waktu maka saya pergi ke sekolah tidak naik bus atau. Bentuk ekuivalen pernyataan majemuk yang lainnya untuk pernyataan tersebut adalah Saya pergi kesekolah tidak naik bus atau saya sampai sekolah tepat waktu. Dalam simbol logika matematika, pernyataan-pernyataan tersebut diberikan seperti daftar berikut. p = Saya pergi ke sekolah naik = Saya sampai sekolah tepat saya pergi ke sekolah naik bus maka saya sampai sekolah tepat waktu p → qJika saya sampai sekolah tidak tepat waktu maka saya pergi ke sekolah tidak naik bus ~q → ~pSaya pergi ke sekolah tidak naik bus atau saya sampai sekolah tepat waktu ~p ∨ q Baca Juga Logika Matematika Konjungsi, Disjungsi, Implikasi, dan Biimplikasi Untuk melihat bentuk ekuivalen pernyataan majemuk tersebut, sobat idschool dapat melihat hasil nilai-nilai kebenaran menggunakan tabel kebenaran. Pembahasan cara membuktikan bentuk ekuivalen pernyataan majemuk akan diulas lebih banyak melalui ulasan di bawah. Cara Membuktikan Bentuk Ekuivalen Pernyataan Majemuk Dua pernyataan dikatakan ekuivalen sama jika kedua pernyataan majemuk tersebut mempunyai nilai kebenaran yang sama. Sehingga, untuk melihat keabsahan dua bentuk ekuivalen pernyataan majemuk dapat dilihat melalui tabel kebenaran. Sebagai contoh akan diselidiki tiga pernyataan majemuk yang menjadi contoh sebelumnya yang memiliki dua proposisi tunggal yaitu p = Saya pergi ke sekolah naik bus dan q = Saya sampai sekolah tepat waktu. Akan diselidiki ekuivalensi dari tiga pernyataan majemuk berikut. p → q Jika saya pergi ke sekolah naik bus maka saya sampai sekolah tepat waktu.~q → ~p Jika saya sampai sekolah tidak tepat waktu maka saya pergi ke sekolah tidak naik bus saya.~p ∨ q Saya pergi kesekolah tidak naik bus atau saya sampai sekolah tepat waktu. Perhatikan tabel kebenaran berikut. Perhatikan bahwa ketiga kolom p → q, ~q → ~p, dan ~p ∨ q memiliki nilai kebenaran yang sama. Kondisi ini dapat menjadi bukti bahwa ketiga pernyataan majemuk tersebut saling ekuivalen. Baca Juga Cara Melengkapi Tabel Kebenaran Logika Matematika Beberapa hukum proposisi berikut dapat bermanfaat untuk menentukan bentuk ekuivalen pernyataan majemuk Hukum Involusi ~~𝑝 ≡ 𝑝Hukum De Morgan∼ 𝑝 ∨ 𝑞 ≡ ∼ 𝑝 ∧ ∼ 𝑞 ∼ 𝑝 ∧ 𝑞 ≡ ∼ 𝑝 ∨ ∼ 𝑞 Hukum Identitas𝑝 ∨ 𝑆 ≡ 𝑝𝑝 ∧ 𝐵 ≡ 𝑝 Hukum Absorpsi𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝 Hukum Null Dominisasi𝑝 ∧ 𝑆 ≡ 𝑆𝑝 ∨ 𝐵 ≡ 𝐵 Hukum Komutatif𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝 Hukum Negasi𝑝 ∧∼ 𝑝 ≡ 𝑆𝑝 ∨∼ 𝑝 ≡ 𝐵 Hukum Asosiatif𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟 Hukum Idempoten𝑝 ∨ 𝑝 ≡ 𝑝𝑝 ∧ 𝑝 ≡ 𝑝 Hukum Distributif𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑟𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ 𝑝 ∧ 𝑟 Contoh beberapa bentuk ekuivalen pernyataan majemuk terdapat pada ekspresi-ekspresi logika matematika berikut. p → q ≡ ~p ∨ qp → q ≡ ~q → ~p~p → q ≡ p ∧ ~qp → q → r ≡ p ∧ q → rp ↔ q ≡ p → q ∧ q → pp ↔ q ≡ ~p ∨ q ∧ ~q ∨ pp ↔ q ≡ p ∧ q ∨ ~p ∧ ~q~p ↔ q ≡ p ↔ ~q Baca Juga Negasi Pernyataan Majemuk dengan Konjungsi, Disjungsi, Implikasi, dan Biimplikasi Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana cara menentukan bentuk ekuivalen pernyataan majemuk. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 Menentukan Bentuk Ekuivalen Pernyataan Majemuk Pernyataan yang ekuivalen dengan pernyataan “Jika semua siswa hadir, maka beberapa guru tidak hadir” adalah ….A. Beberapa siswa tidak hadir atau beberapa guru hadirB. Semua siswa tidak hadir atau beberapa guru tidak hadirC. Beberapa siswa tidak hadir atau beberapa guru tidak hadirD. Beberapa siswa tidak hadir atau semua guru tidak hadirE. Semua siswa hadir dan beberapa guru hadir PembahasanMisalkan proposisi dari premis pada soal disimbolkan dalam huruf p dan q seperti berikut. p = Semua siswa hadirq = Beberapa guru tidak hadir Negasi dari kedua proposisi tunggal di atas adalah ~p = Beberapa siswa tidak hadir~q = Semua guru hadir Pernyataan p → qSalah satu bentuk pernyataan yang ekuivalen denga p → q adalah ~p ∨ yang sesuai dengan ekspresi logika ~p ∨ q Jika semua siswa hadir, maka beberapa guru tidak hadir” adalah “Beberapa siswa tidak hadir atau beberapa guru tidak hadir. Jadi, pernyataan yang ekuivalen dengan pernyataan Jika semua siswa hadir, maka beberapa guru tidak hadir” adalah “Beberapa siswa tidak hadir atau beberapa guru tidak C Contoh 2 Menentukan Pernyataan Majemuk yang Ekuivalen Pernyataan ~p → q ekuivalen dengan ….A. p ∧ qB. p ∨ qC. ~p ∨ qD. p ∨ ~qE. q → p PembahasanSalah satu cara yang dapat digunakan untuk menentukan bentuk ekuivalen pernyataan majemuk adalah mengasikan dua kali seperti yang dilakukan pada cara berikut. Mencari pernyataan majemuk yang ekuivalen dengan p → qp → q ≡ ~[~~p → q]p → q ≡ ~[~p ∧ ~q]p → q ≡ ~~p ∨ ~~qp → q ≡ p ∨ q Jadi, pernyataan ~p → q ekuivalen dengan p ∨ B Contoh 3 Menentukan Pernyataan Majemuk yang Ekuivalen PembahasanPernyataan yang senilai adalah bentuk ekuivalen pernyataan. Pernyataan yang diberikan berupa suatu implikasi p → q. Selidiki masing-masing pernyataan yang diberikan pada soal 1 p → q ≢ q → p, karena merupakan suatu implikasi dan bentuk konvers nya, nilai kebenarannya tidak sama2 p → q ≢ ~p → ~q, karena merupakan suatu implikasi dan bentuk inversnya, nilai kebenarannya tidak sama3 p → q ≡ ~q → ~p, karena merupakan suatu implikasi dan bentuk kontraposisinya4 p → q ≡ ~[~p → q] ≡ ~p ∧ ~q ≡ ~p ∨ ~~q ≡ ~p ∨ q Jadi, pernyataan yang benar terdapat pada nomor 3 dan 4.Jawaban D Demikianlah ulasan materi bentuk ekuivalen pernyataan majemuk yang dilengkapi dengan bagaimana cara membuktikan kebenarannya. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Tautologi, Kontradiksi, dan Kontingensi
Tentukannegasi dari pernyataan majemuk berikut Deni malas belajar atau ia tidak pandai. SD Tentukan negasi dari pernyataan majemuk berikut De AA. Apriansius A. 24 Januari 2022 14:26. Tentukan negasi dari pernyataan majemuk berikut Deni malas belajar atau ia tidak pandai. 11. 1.
TENTUKANNEGASI DARI KALIMAT MAJEMUK BERIKUT ! 1.2+4>3dan 3 bukan bilangan ganjil 2.20=0atau 23=8 3. Jika ketiga sudut segitiga besarnya sama maka segitiga tersebut sama sisi 4. Vero tidak memakai jaket jika dan hanya jika udara panas SELAMAT MENGERJAKAN •PERTEMUAN BERIKUTNYA KALIAN AKAN MEMPELAJARI KONVERS, INVERS DAN KONTRAPOSISI.
. 36 390 95 288 60 107 177 371

tentukan negasi dari pernyataan majemuk berikut